Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Bioorg Med Chem Lett ; 87: 129283, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2291735

RESUMEN

Development of novel agents that prevent thrombotic events is an urgent task considering increasing incidence of cardiovascular diseases and coagulopathies that accompany cancer and COVID-19. Enzymatic assay identified novel GSK3ß inhibitors in a series of 3-arylidene-2-oxindole derivatives. Considering the putative role of GSK3ß in platelet activation, the most active compounds were evaluated for antiplatelet activity and antithrombotic activity. It was found that GSK3ß inhibition by 2-oxindoles correlates with inhibition of platelet activation only for compounds 1b and 5a. Albeit, in vitro antiplatelet activity matched well with in vivo anti-thrombosis activity. The most active GSK3ß inhibitor 5a exceeds antiplatelet activity of acetylsalicylic acid in vitro by 10.3 times and antithrombotic activity in vivo by 18.7 times (ED50 7.3 mg/kg). These results support the promising role of GSK3ß inhibitors for development of novel antithrombotic agents.


Asunto(s)
COVID-19 , Trombosis , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Oxindoles/farmacología , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Agregación Plaquetaria
2.
Molecules ; 28(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2216646

RESUMEN

The enzyme NRH:quinone oxidoreductase 2 (NQO2) plays an important role in the pathogenesis of various diseases such as neurodegenerative disorders, malaria, glaucoma, COVID-19 and cancer. NQO2 expression is known to be increased in some cancer cell lines. Since 3-arylidene-2-oxindoles are widely used in the design of new anticancer drugs, such as kinase inhibitors, it was interesting to study whether such structures have additional activity towards NQO2. Herein, we report the synthesis and study of 3-arylidene-2-oxindoles as novel NRH:quinone oxidoreductase inhibitors. It was demonstrated that oxindoles with 6-membered aryls in the arylidene moiety were obtained predominantly as E-isomers while for some 5-membered aryls, the Z-isomers prevailed. The most active compounds inhibited NQO2 with an IC50 of 0.368 µM. The presence of a double bond in the oxindoles was crucial for NQO2 inhibition activity. There was no correlation between NQO2 inhibition activity of the synthesized compounds and their cytotoxic effect on the A549 cell line.


Asunto(s)
COVID-19 , Quinona Reductasas , Humanos , Quinona Reductasas/química , Oxindoles/farmacología , Quinonas/farmacología
3.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1875727

RESUMEN

Acute lung injury remains a challenging clinical condition, necessitating the development of novel, safe and efficient treatments. The prevention of macrophage M1-polarization is a viable venue to tackle excessive inflammation. We performed a phenotypic screening campaign to identify azolopyrimidine compounds that effectively inhibit LPS-induced NO synthesis and interleukin 6 (IL-6) secretion. We identified lead compound 9g that inhibits IL-6 secretion with IC50 of 3.72 µM without apparent cytotoxicity and with minimal suppression of macrophage phagocytosis in contrast to dexamethasone. In a mouse model of LPS-induced acute lung injury, 30 mg/kg i.p. 9g ameliorated anxiety-like behavior, inhibited IL-6 release, and limited neutrophil infiltration and pulmonary edema. A histological study confirmed the protective activity of 9g. Treatment with compound 9g prevented the migration of CD68+ macrophages and the incidence of hemorrhage. Hence, we have identified a promising pharmacological approach for the treatment of acute lung injury that may hold promise for the development of novel drugs against cytokine-mediated complications of bacterial and viral infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA